Wet FGD Mercury Control for Coal-Fired Utility Boilers

SCIENTECH Mercury Emissions Control Workshop January 22, 2002

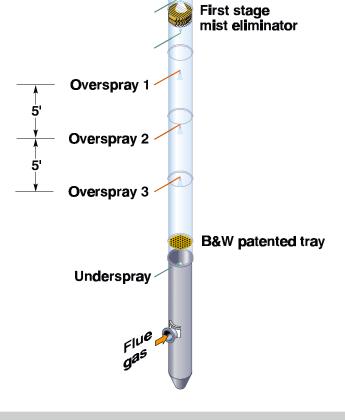
Presenter: Kevin E. Redinger, Babcock & Wilcox Co-Authors: G. Kudlac, G. Amrhein, D. Yurchison, MTI

US Department of Energy / Ohio Coal Development Office
Babcock & Wilcox / MTI

B&W Wet SO₂ Scrubber

B&W / MTI Pilot Wet Scrubber

Typical Operating Conditions


Inlet Gas Flow 2,100 acfm

Slurry pH 5.4 - 5.6

L/G Ratio 120 gal / 1,000 acf

SO₂ Removal / Slurry Oxidation 95% / >99%

Total height

24"

Second stage

mist eliminator

50' 4-1/2"

Total Inlet Mercury = $14.8 \pm 2.1 \text{ ug/dscm}$

FGD Design and Operation Impacts Mercury Control

Oxidized Mercury Removal at 85% to 98%

Limited Impact on Elemental Mercury

Wet Scrubber Performance Optimization

Additives

- Different reagents
- Different means of injection

◆Hg Sampling

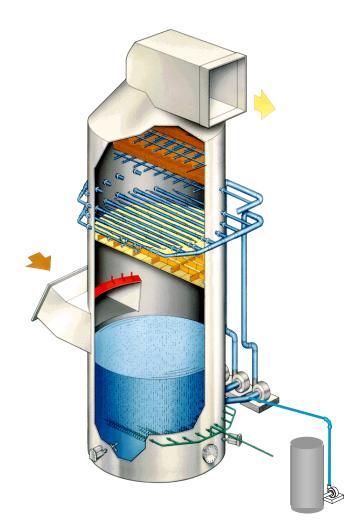
- Triplicate Ontario Hydro sample trains performed at wet scrubber inlet and outlet for each specific test condition
- Process samples (coal, slurry, ESP ash) collected for each test condition
- PS Analytical Sir Galahad Hg analyzer on-site for qualitative determination of Hg control performance

AECDP WFGD Control Enhancement Results

Effective, convenient method of reagent addition

Test Series #1 Hg Removal Results

Safe, stable reagent proves effective



Test Series #2 Hg Removal Results

Full Scale Demonstration Tests

Mercury Removal Chemical Addition

Reagent Injection Skid for Demonstration Tests

MSCPA Endicott - 55 MW / Limestone / In-situ oxidation

Full-Scale Parametric Tests - MSCPA

Full-Scale Parametric Tests - MSCPA

Parametric Test Performance - Endicott WFGD Outlet

Cinergy Zimmer - 1300 MW / Thiosorbic Lime / Ex-situ oxidation

Fate of Mercury - FGD Byproducts

- Mercury found mainly in solid phase
 - Filtrate samples < 0.0005 mg/l
 - Solids samples 0.064 to 0.190 mg/kg
 - Suggests mercury not in soluble form (not HgCl₂)
- ◆ Solids leaching tests (TCLP / HNO₃ / HNO₃ and HCl)
 - TCLP results generally non-detect (< 0.21 mg/kg)
 - Strong acid digestion suggests mercury not strongly tied to ash or gypsum
 - Acids used were much stronger than would be encountered naturally
 - No impact of additive observed
- ◆Thermal Decomposition Tests
 - PSA continuous mercury analyzer
 - Mercury appears in the byproduct as HgSO₄ and either HgO and/or HgS.

Thermal Decomposition Analysis

Thermal Decomposition Curve (TDC) for Hg Standards

TDC for Pilot WFGD Solids

(Baseline - 47% Reduction)

WS-1C Dewatered ART Slurry - 2.2258 g

250 ml/min Ar, 2% SnCl₂ in 5% NaOH, 6°C/min, Test: 112700-1

TDC for Pilot WFGD Solids

(Alt. Approach 1 - 77% Reduction)

WS-5C Dewatered ART Slurry - 3.2424 g

250 ml/min Ar, 2% SnCl₂ in 5% NaOH, 6°C/min, Test: 111600-3

EPA ICR Data - Wet FGD Mercury Control

PC Fired Boilers - Baghouse and Wet FGD

Wet FGD Mercury Emissions Reduction %

Range Average

Lignite (No sites)

Sub-Bituminous (No sites)

Bituminous (2 sites)

58 - 86

72

Average inlet Hg⁰ (33% of total)
Design L/G 60 and 100 gpm/kacfm
Open spray towers
90% SO₂ removal
Natural oxidation

EPA ICR Data - Wet FGD Mercury Control

PC Fired Boilers - Cold Side ESP and Wet FGD

	Mercury Emissions R Range	
Lignite (2 sites) Average inlet Hg ⁰ (46%)	21 - 56	44
Sub-Bituminous (3 sites) High average inlet Hg ⁰ (72%)	0 - 57	25
Bituminous (1 site) Average inlet Hg ⁰ (30%) Design L/G 138 gpm/acfm Open spray towers 95% SO ₂ removal (Formic acid action)	62 - 68 ddition)	64

EPA ICR Data - Wet FGD Mercury Control

PC Fired Boilers - Hot Side ESP and Wet FGD

	Mercury Emissions I Range	
Lignite (No sites)		
Sub-Bituminous (5 sites) Average inlet Hg ⁰ (61%)	3 - 43	29
Bituminous (1 site) Average inlet Hg ⁰ (31%) Outlet Hg ⁰ +19% over inlet Hg ⁰ Design L/G 50 gpm/acfm Venturi tower 52.7% SO ₂ removal Natural oxidation	45 - 53	49

EPA Perspective on Wet FGD Mercury Control

Current Level of Control (ICR Data)

	Bituminous	Sub-bituminous
ESP & WFGD	80	0
FF & WFGD	90	75

◆ Near-Term Potential (2007 -2008)

	Bituminous	Sub-bituminous
ESP & WFGD	90	50
FF & WFGD	90	85

Source: Robert J. Wayland, US EPA , Northeast Midwest Institute/ECOS Meeting, July, 2001

OEM Perspective on Wet FGD Mercury Control

- Mercury control variation may reflect inherent differences in system designs
 - Liquid -to-Gas Ratio (L/G)
 - Tray Tower vs. Open Spray Tower
 - Oxidation (Forced / Natural / Inhibited)
- Consider FGD design and operation differences in ICR data review
- ◆ 90+% removal potential for bituminous coal
- ◆ Integration of mercury oxidation for low CI coals needed

Ongoing Wet FGD Mercury Control Work

- Demonstration test data analysis
- **◆**FGD inlet mercury speciation
 - Mercury oxidation across SCR catalyst tests
 - Fuel and flue gas additives for PRB coal
- Fate of mercury characterization testing
- ◆ Wet FGD tests on other coal types

